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The story behind embrace...



In 2007, Prof. Picard's team at the MIT Affective
Computing Lab was working on a wearable device that could
measure skin conductance and stress.... to help children with

autism spectrum

: M. Scott Brauer
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What Can We Expect from M-Health?
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o Info gathering

o community and clinic data
o Delivery & management of health care
o Guidance for & enhancement of measurement-based care

o Real-time monitoring

o Ecological momentary assessments (EMA)

o Passive, behavioral or context-sensing



Digital Health (FDA, 2017)

Any mobile health, health information technology,
wearable devices, telehealth, telemedicine and
personalized medicine.

Digital medicine devices either touch the surface of a person’s
body, or are ingested, inserted or implanted into the body.
They also record information that can be stored, tracked, and

shared.
* Data collection, management and analysis
* Emerging forms combine device technology with medication
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FDA NEWS RELEASE

FDA approves pill with sensor that digitally
tracks if patients have ingested their medication

ABILIFY MYCITE® is a drug -device combination of aripiprazole embedded with Proteus’
ingestible sensor that communicates with Proteus’ wearable sensor patch, and a
smartphone application. The product measures ingestion of ABILIFY MYCITE® and patient

activity, rest and mood.

How does Proteus
Discover work?

Proteus Discover consists of an ingestible sensor the size of a grain of sand, a small
wearable sensor patch, an application on a mobile device and a provider portal. The
patient activates Proteus Discover by taking medication with an ingestible sensor. Once
the ingestible sensor reaches the stomach, it transmits a signal to the patch worn on the
torso. A digital record is sent to the patient’s mobile device and then to the Proteus cloud
where with the patient’s permission, healthcare providers and caregivers can access it via
their portal. The patch also measures and shares patient activity and rest.




Digital Phenotyping

* Definition - “Moment-by-moment quantification of the
individual-level human phenotype using data from
personal digital devices”



* Rationale Individuals might leave behind

a footprint of their health status through
use of technology

Activities through Social media
Online communities
Wearable technologies
Mobile devices
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Potential Advantages of Incorporating
Digital Phenotyping
into ‘mainstream’ Clinical Care and Research

 DP allows a better capture of the lived experiences of subjects,
and their interactions with the surrounding world...

o With minimal interference
o Documenting experiences leading to/following key events

o Active and passive data
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Incorporating Digital Phenotyping
into ‘Mainstream Research’

Challenges

e Skepticism - health researchers are ‘laggards’, not early
adopters...

e Concerns around privacy and confidentiality

* Ethical concerns, reinforcing inequalities

* What are the appropriate metrics? Novel endpoints?
e Customizable? Scalable?

 Statistical methods for analyzing, modeling data

* Reliability of mobile apps
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CAN-BIND and HealthRhythms Program for Research

Ultimately, we hope to be able to:
* Quantify prodromal symptoms prior to relapse versus sustained wellness

* Measure patient behavior in the context of interventions
* Characterize digital biomarkers across patient segments

* Cross validate novel endpoints against traditional markers - clinical,

imaging, molecular
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ARTICLE
Relapse prediction in schizophrenia through digital
phenotyping: a pilot study

lan Barnett', John Torous®*, Patrick Staples®, Luis Sandoval?, Matcheri Keshavan® and Jukka-Pekka Onnela*

17 subjects with schizophrenia in active treatment at a state mental
health clinic in Boston

Active and passive data

Beiwe app on their personal smartphone for up to 3 months

Anomalous breaks from a patient’s usual trend in self-reported outcomes,
sociability or mobility may be indicative of broader behavioral changes, could
precede adverse events such as relapse

Neuropsychopharmacology (2018) 43:1660-1666; https://doi.org/10.1038/541386-018-0030-z




ARTICLE
Relapse prediction in schizophrenia through digital
phenotyping: a pilot study

lan Barnett', John Torous*, Patrick Staples®, Luis Sandoval®, Matcheri Keshavan? and Jukka-Pekka Onnela*

Table 2. Listing of 6 survey question categories, 15 mobility features, and 16 sociability features

Survey question categories Mobility features Sociability features

1. Depression 1. Time spent at home 1. Number of outgoing texts
2. Sleep quality 2. Distance traveled 2. Total outgoing text length
3. Psychosis 3. Radius of gyration 3. Texting out-degree
4. Warning symptoms scale 4. Maximum diameter 4. Number of incoming texts
5. Taking medication 5. Maximum distance from home 5. Total incoming text length
6. Anxiety 6. Number of significant locations 6. Texting in-degree
7. Average flight length 7. Texting reciprocity
8. Standard deviation of flight length 8. Texting responsiveness
9. Average flight duration 9. Number of outgoing calls
10. Standard deviation of flight duration 10. Total outgoing call duration
11. Fraction of the day spent stationary 11. Call out-degree
12. Significant location entropy 12. Number of incoming calls
13. Minutes of GPS data missing 13. Total incoming call durations
14. Physical circadian rhythm 14. Call in-degree
15. Physical circadian rhythm stratified 15. Call reciprocity
16. Call responsiveness

Each mobility and sociability feature is calculated each day for each patient. For each survey question category, a category score is produced for each day the
surveys were administered by averaging the score across all questions answered from that category, where each survey question is scored from 0 to 3.
Mobility feature 15 is stratified by weekend day vs. week day. Detailed descriptions of mobility feature definitions can be found in Canzian and Musolesi [35]. In
sociability features, text length is quantified as the number of characters in the text messages, so for example, sociability feature 2 is the sum of the number of
characters in text messages over each day. Further, we use the social network term “degree” to refer to the number of distinct communication partners. For
example, sociability feature 6, texting in-degree, comresponds to the number of individuals who have sent a text message to the subject on the given day.




ARTICLE
Relapse prediction in schizophrenia through digital

phenotyping: a pilot study

lan Barnett', John Torous*, Patrick Staples®, Luis Sandoval®, Matcheri Keshavan? and Jukka-Pekka Onnela*
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The SNAPSHOT Study is a large-scale and
long-term study that seeks to measure:
Sleep,

Networks,

Affect,

Performance,

Stress, and

Health using

Objective

Techniques.

This study investigates how daily behaviors
influence sleep, stress, mood, and other
wellbeing-related factors

Can we recognize or predict stress,
mood, and wellbeing and how
interactions in a social network
influence sleep behaviors?




Results from SNAPSHOT

This study investigates:

(1) how daily behaviors influence sleep,
stress, mood, and other wellbeing-related
factors

(2) how accurately we can recognize/predict
stress, mood and wellbeing

(3) how interactions in a social network
influence sleep behaviors.

In this work we investigate the use of
machine learning methods, using sleep
and wake data, to predict mood.

Conclusions

» Features between midnight and 8am were
particularly informative for classifying
evening mood.

» Automated machine learning, applied to
nightly data from sensors and smartphones,
shows value for predicting college student’s
mood the following evening.

» There is potential value in using objective
sleep hygiene data for understanding mood
progression.

Machine Learning of Sleep and Wake Behaviors to
Classify Self-Reported Evening Mood
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Introduction

The SNAPSHOT Study ie a large-scale and
long-term study that seeks to measure:

and Health using Objective Techniques.

Thig study investigates:

(1) how daily behaviors influsnce sleep,
streas, mood, and other wellbeing-related

factors

(2) how accurately we can recognize/predict
streas, mood and wellbeing

(3) how interactions in a social network
influence sleep behaviors.

In this work we investigate the use of

machine leaming methods, using sleep
and wake data, to predict mood.

‘We zeek to model behavioral patterns to
predict these downturna in mood and begin to
understand what will help build resdience to
depression.

Data Collection
68 Undergraduate Students
Age 18-25, 47 males
~30 day study [1]
Data collected from:
- Wearable Sensors
- SMS and Call Logs
= Smartphone Use

= Smartphone Location
- Self-reported daily activitiee and behaviors
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Results

Many features were computed and evaluated

over sleep and wake, including:

- Skin Conductance metrics (median, st.dev..
area under the curve)

Fig 1: Skin conductance signal

« Smartphone Screen-on durations
= Number of SMS and Calls sent and received
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according to evening mood

« Time Spent Indoors
- Nommality of the day

FIg 3: Probability distribution of one
participant’s locations. Blue areas are more
Iikcaly.

Combinations of these featuree achieved 88%
for ifying evening i

This happiness classification accuracy is
improved to 72% when we multi-task over
several labels [2]
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Conclusions
- Features between midnight and 8am were
¢ 4 g s

evening mood.

« Automated machine leamning, applied to
nightly data from sensors and amartphones,
shows value for predicting college student’s

- There i potential value in using objective
sleap hygiene data for understanding mood
progression.

Future Work

= Integrate more data. We have now
collectad data from over 200 students.

= Account for individual differences.
Currently, our models group all participants
together during classification. We now
have new methods where we can leverage
data from across the population and
account for individual differences at the
same time.
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Table 1
Main applications of digital phenotypes to be explored in research in mood disorders.

Hosptal, Kingston, ON, Canada

Objective

Inter-individual variability

Intra-individual variability

Diagnosis
Clinical characterization
Course of illness

Treatment response
Treatment tolerance

Prevention

Biomarkers approach

Comparison with healthy controls and between diagnoses
Assessment of RDoC dimensions
Detection of subgroups of patients (sample stratification)

Prediction of response, non-response and remission

Identification of predictors of side effects (e.g. use of sedative agents and
patients with hypersomnia)

Identification of high-risk groups

Traits

Detect mild and subsyndromal manic/depressive symptoms
Detection of nuances, symptoms variability and granularity
Prediction of critical outcomes in illness course (relapse, recurrence,
resilience)

Early detection of response, non-response and remission

Early, objective and reliable identification of side-effects.

Prediction and prevention of chronic and multi-episodic
presentations versus wellness
States
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Research project(s)

* Digital phenotyping incorporated into clinical trials

 Early changes that could identify/predict poor/good response

* Variability/sustainability of treatment response over time — predictors of
resilience or sustained wellness

 New outcome measures - high correlation with standard measures...but
within the context of participant’s daily routine

* Digital phenotyping incorporated into biomarker validation
studies

* Composite/algorithm to understand intra-individual variability over time
* Better understand response, relapse, sustained wellness
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The Division of Digital Psychiatry

AT THE BETH ISRAEL DEACONESS MEDICAL CENTER

Digital Clinic

John Torous, MD MBI

DIRECTOR

The Digital Clinic represents direct implementation and service delivery of digital mental health. In the learning healthcare system model, our team
constantly collects feedback and works to improve our implementation with the goal of increasing quality of care as well as access.
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The Division of Digital Psychiatry

AT THE BETH ISRAEL DEACONESS MEDICAL CENTER

Digital Clinic Digital Relapse Prediction Digital Opportunities for

Outcomes in Recovery Services
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