Hype or Revolution? How M-Health is finding its way into Mental Health mainstream research and clinical care

Claudio N Soares MD, PhD, FRCPC, MBA

Professor and Head, Department of Psychiatry, Queen's University School of Medicine

Executive Lead, Research and Innovation Providence Care Hospital

Executive Lead, Canadian Biomarker Integration Network in Depression (CAN-BIND), University of Toronto

The story behind embrace...

In 2007, Prof. Picard's team at the MIT Affective Computing Lab was working on a wearable device that could measure skin conductance and stress.... to help children with autism spectrum

empatica {>>>

Measure both branches of the autonomic nervous system.

embrace[®] HELPS PEOPLE LIVING WITH EPILEPSY.

What Can We Expect from M-Health?

- Info gathering
- o community and clinic data

Delivery & management of health care

• Guidance for & enhancement of measurement-based care

• Real-time monitoring

- Ecological momentary assessments (EMA)
- Passive, behavioral or context-sensing

Digital Health (FDA, 2017)

Any mobile health, health information technology, wearable devices, telehealth, telemedicine and personalized medicine.

Digital medicine devices either touch the surface of a person's body, or are ingested, inserted or implanted into the body. They also record information that can be stored, tracked, and shared.

- Data collection, management and analysis
- Emerging forms combine device technology with medication

FDA NEWS RELEASE

FDA approves pill with sensor that digitally tracks if patients have ingested their medication

ABILIFY MYCITE[®] is a drug -device combination of aripiprazole embedded with Proteus' ingestible sensor that communicates with Proteus' wearable sensor patch, and a smartphone application. The product measures ingestion of ABILIFY MYCITE[®] and patient activity, rest and mood.

How does Proteus Discover work?

Proteus Discover consists of an ingestible sensor the size of a grain of sand, a small wearable sensor patch, an application on a mobile device and a provider portal. The patient activates Proteus Discover by taking medication with an ingestible sensor. Once the ingestible sensor reaches the stomach, it transmits a signal to the patch worn on the torso. A digital record is sent to the patient's mobile device and then to the Proteus cloud where with the patient's permission, healthcare providers and caregivers can access it via their portal. The patch also measures and shares patient activity and rest.

Digital Phenotyping

 Definition - "Moment-by-moment quantification of the individual-level human phenotype using data from personal digital devices" Rationale Individuals might leave behind a footprint of their health status through use of technology

Activities through Social media Online communities Wearable technologies Mobile devices

Potential Advantages of Incorporating Digital Phenotyping into 'mainstream' Clinical Care and Research

- DP allows a better capture of the lived experiences of subjects, and their interactions with the surrounding world...
 - With minimal interference
 - Documenting experiences leading to/following key events
 - Active and passive data

Behavioral Sensing Measures

Duration of Speech

Rhythms of voice

А		lation	difference				
	duration	interval	duratio	n interval			
1.0 anpro-0.5							
в							
Theta/Alpha temporal (T7) parietal (CP2)							
				<voice type=""> a. electronic b. English male c. Japanese female d. partner's e. self</voice>			

Rhythms of Movement

ocation Entropy

Incorporating Digital Phenotyping into 'Mainstream Research'

Challenges

- Skepticism health researchers are 'laggards', not early adopters...
- Concerns around privacy and confidentiality
- Ethical concerns, reinforcing inequalities
- What are the appropriate metrics? Novel endpoints?
- Customizable? Scalable?
- Statistical methods for analyzing, modeling data
- Reliability of mobile apps

CAN-BIND Integrated Platforms

Clinical Outcomes

- Clinician administered scales
- Patient-reported outcomes
- Electronic data capture

Molecular Profiling

- Gene expression
- SNP analysis
- GWAS
- SRM-MS
- Whole genome miRNA
- Redox, methylation

Preclinical

- Rodent anhedonia models
- Zebrafish high-throughput
- Pharmacology & electrophysiology

M-Health

- Behavioural Sensing
- Ecological momentary assessments

EEG

- Resting state, eyes open
- Resting state, eyes closed
- Various functional tasks

Neuroimaging

- T1-weighted anatomical scan
- DTI series
- T2-weighted BOLD EPI series
- BOLD EPI series during tasks

Data Science

• Statistical tools coupled with machine learning tools to create biomarker models

Knowledge Translation

- Public and provider education
- Patient Advisory Committee
- Social media strategy
- Implementation science

CAN-BIND and HealthRhythms Program for Research

Ultimately, we hope to be able to:

- Quantify prodromal symptoms prior to relapse versus sustained wellness
- Measure patient behavior in the context of interventions
- Characterize digital biomarkers across patient segments
- Cross validate novel endpoints against traditional markers clinical, imaging, molecular

Prediction	Subj01	Subj02	Subj03	Subj04	Subj05	Subj06	Subj07	Subj08	Subj09	Subj10	Subj11
Score											
MAE - RF	0.62	1.37	1.1	1.36	1.32	0.74	2.6	0.9	1.11	1.83	1.1
% Error	12.4	15	12.1	15	13.2	20	23.6	18	10.5	9.9	10

Figure 3. Predicted (Red) vs. Actual PHQ Scores (Blue): Participant 01

Figure 4. Predicted (Red) vs. Actual PHQ Scores (Blue): Participant 04

ARTICLE

Relapse prediction in schizophrenia through digital phenotyping: a pilot study

lan Barnett¹, John Torous^{2,3}, Patrick Staples⁴, Luis Sandoval², Matcheri Keshavan² and Jukka-Pekka Onnela⁴

- 17 subjects with schizophrenia in active treatment at a state mental health clinic in Boston
- Active and passive data
- Beiwe app on their personal smartphone for up to 3 months

Anomalous breaks from a patient's usual trend in self-reported outcomes, sociability or mobility may be indicative of broader behavioral changes, could precede adverse events such as relapse

Neuropsychopharmacology (2018) 43:1660-1666; https://doi.org/10.1038/s41386-018-0030-z

ARTICLE

Relapse prediction in schizophrenia through digital phenotyping: a pilot study

lan Barnett¹, John Torous^{2,3}, Patrick Staples⁴, Luis Sandoval², Matcheri Keshavan² and Jukka-Pekka Onnela⁴

Survey question categories	Mobility features	Sociability features		
1. Depression	1. Time spent at home	1. Number of outgoing texts		
2. Sleep quality	2. Distance traveled	2. Total outgoing text length		
3. Psychosis	Psychosis 3. Radius of gyration			
4. Warning symptoms scale 4. Maximum diameter		4. Number of incoming texts		
5. Taking medication	5. Maximum distance from home	5. Total incoming text length		
6. Anxiety	6. Number of significant locations	6. Texting in-degree		
	7. Average flight length	7. Texting reciprocity		
	8. Standard deviation of flight length	8. Texting responsiveness		
	9. Average flight duration	9. Number of outgoing calls		
	10. Standard deviation of flight duration	10. Total outgoing call duration		
	11. Fraction of the day spent stationary	11. Call out-degree		
	12. Significant location entropy	12. Number of incoming calls		
	13. Minutes of GPS data missing	13. Total incoming call duration		
	14. Physical circadian rhythm	14. Call in-degree		
	15. Physical circadian rhythm stratified	15. Call reciprocity		
		16. Call responsiveness		

Each mobility and sociability feature is calculated each day for each patient. For each survey question category, a category score is produced for each day the surveys were administered by averaging the score across all questions answered from that category, where each survey question is scored from 0 to 3. Mobility feature 15 is stratified by weekend day vs. week day. Detailed descriptions of mobility feature definitions can be found in Canzian and Musolesi [35]. In sociability features, text length is quantified as the number of characters in the text messages, so for example, sociability feature 2 is the sum of the number of characters in text messages over each day. Further, we use the social network term "degree" to refer to the number of distinct communication partners. For example, sociability feature 6, texting in-degree, corresponds to the number of individuals who have sent a text message to the subject on the given day.

ARTICLE

Relapse prediction in schizophrenia through digital phenotyping: a pilot study lan Barnett¹, John Torous²³, Patrick Staples⁴, Luis Sandoval², Matcheri Keshavan² and Jukka-Pekka Onnela⁴

Of the 3 subjects who experienced relapse with sufficient data, the rate of anomalies detected in the 2 weeks prior to relapse was 71% higher than the rate of anomalies detected in dates further away from relapse Draft for Body Sensor Networks 2015

Recognizing Academic Performance, Sleep Quality, Stress Level, and Mental Health using Personality Traits, Wearable Sensors and Mobile Phones

Akane Sano^{*1}, Andrew J. Phillips^{*2}, Amy Z. Yu^{*1}, Andrew W. McHill^{*2}, Sara Taylor^{*1}, Natasha Jaques^{*1}, Charles A. Czeisler^{*2}, Elizabeth B. Klerman^{*2}, Rosalind W. Picard^{*1}

Machine Learning of Sleep and Wake Behaviors to Classify Self-Reported Evening Mood

Sara Taylor¹, Natasha Jaques¹, Akane Sano¹, Asaph Azaria¹, Asma Ghandeharioun¹, Rosalind Picard

The **SNAPSHOT** Study is a large-scale and long-term study that seeks to measure: Sleep, Networks, Affect, Performance, Stress, and Health using Objective Techniques.

This study investigates how daily behaviors influence sleep, stress, mood, and other wellbeing-related factors

Can we recognize or predict stress, mood, and wellbeing and how interactions in a social network influence sleep behaviors?

Results from SNAPSHOT

This study investigates:

- how daily behaviors influence sleep, stress, mood, and other wellbeing-related factors
- (2) how accurately we can recognize/predict stress, mood and wellbeing
- (3) how interactions in a social network influence sleep behaviors.

In this work we investigate the use of machine learning methods, using sleep and wake data, to predict mood.

Conclusions

- Features between midnight and 8am were particularly informative for classifying evening mood.
- Automated machine learning, applied to nightly data from sensors and smartphones, shows value for predicting college student's mood the following evening.
- There is potential value in using objective sleep hygiene data for understanding mood progression.

Neuroscience and Biobehavioral Reviews 104 (2019) 223-230

Contents lists available at ScienceDirect Neuroscience and Biobehavioral Reviews

journal homepage: www.elsevier.com/locate/neubiorev

Integrating digital phenotyping in clinical characterization of individuals with mood disorders

Elisa Brietzke^a, Emily R. Hawken^a, Maia Idzikowski^a, Janice Pong^b, Sidney H. Kennedy^c, Claudio N. Soares^{a,d,*}

^a Department of Psychiatry, Providence Care Hospital, Queen's University School of Medicine, Kingston ON, Canada

^b Canadian Biomarker Integration Network in Depression (CAN-BIND) at St. Michael's Hospital, Toronto, ON, Canada

^c Department of Psychiatry, University of Toronto, St. Michael's Hospital, University Health Network, Arthur Sommer Rotenberg Chair in Suicide and Depression Studies, Toronto, ON, Canada

^d Canadian Biomarker Integration Network in Depression (CAN-BIND) at Queen's University and Providence Care Hospital, Kingston, ON, Canada

Table 1

Main applications of digital phenotypes to be explored in research in mood disorders.

Objective	Inter-individual variability	Intra-individual variability
Diagnosis Clinical characterization Course of illness	Comparison with healthy controls and between diagnoses Assessment of RDoC dimensions Detection of subgroups of patients (sample stratification)	Detect mild and subsyndromal manic/depressive symptoms Detection of nuances, symptoms variability and granularity Prediction of critical outcomes in illness course (relapse, recurrence, resilience)
Treatment response	Prediction of response, non-response and remission	Early detection of response, non-response and remission
Treatment tolerance	Identification of predictors of side effects (e.g. use of sedative agents and	Early, objective and reliable identification of side-effects.
	patients with hypersomnia)	
Prevention	Identification of high-risk groups	Prediction and prevention of chronic and multi-episodic
		presentations versus wellness
Biomarkers approach	Traits	States

Table 1

Main applications of digital phenotypes to be explored in research in mood disorders.

II III III III		
Objective	Inter-individual variability	Intra-individual variability
Diagnosis	Comparison with healthy controls and between diagnoses	Detect mild and subsyndromal manic/depressive symptoms
Clinical characterization	Assessment of RDoC dimensions	Detection of nuances, symptoms variability and granularity
Course of illness	Detection of subgroups of patients (sample stratification)	Prediction of critical outcomes in illness course (relapse, recurrence, resilience)
Treatment response	Prediction of response, non-response and remission	Early detection of response, non-response and remission
Treatment tolerance	Identification of predictors of side effects (e.g. use of sedative agents and patients with hypersomnia)	Early, objective and reliable identification of side-effects.
Prevention	Identification of high-risk groups	Prediction and prevention of chronic and multi-episodic presentations versus wellness
Biomarkers approach	Traits	States

Research project(s)

- Digital phenotyping incorporated into clinical trials
 - Early changes that could identify/predict poor/good response
 - Variability/sustainability of treatment response over time predictors of resilience or sustained wellness
 - New outcome measures high correlation with standard measures...but within the context of participant's daily routine
- Digital phenotyping incorporated into biomarker validation studies
 - Composite/algorithm to understand intra-individual variability over time
 - Better understand response, relapse, sustained wellness

Home About Projects mindLAMP Publications Blog Connect

The Division of **Digital Psychiatry**

AT THE BETH ISRAEL DEACONESS MEDICAL CENTER

PROJECTS

Digital Clinic

The Digital Clinic represents direct implementation and service delivery of digital mental health. In the learning healthcare system model, our team constantly collects feedback and works to improve our implementation with the goal of increasing guality of care as well as access.

© 2019 Division of Digital Psychiatry

Beth Israel Deaconess Medical Center

John Torous, MD MBI

Go Up 🔨

The Division of **Digital Psychiatry**

AT THE BETH ISRAEL DEACONESS MEDICAL CENTER

Funding support from

- Ontario Research Fund, Research of Excellence (ORF-RE)
- Queen's University
- SEAMO Innovation Research Awards
- Ontario Brain Institute (OBI)

