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“When you hear hoofbeats, 
think of horses not zebras.” 

—Dr. Theodore Woodward
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THE ICU IS A PROVING 
GROUND FOR PRECISION 
MEDICINE

Lots of data

Lots of heterogeneity





Critical illness is defined by syndromes

…and syndromes are heterogeneous



Critical illness is defined by syndromes



Critical illness is defined by syndromes

SEPSIS = infection + life-threatening organ dysfunction 
(and is implicated in 1 out 5 deaths worldwide)

Lung Brain Heart Liver

?



Machine learning & sepsis 
Where are we now?



Sepsis subtypes

Gene expression data



Sepsis subtypes

Gene expression data

Not ready for Prime Time



Predicting sepsis onset
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Objectives: Develop and implement a machine learning algorithm 
to predict severe sepsis and septic shock and evaluate the impact 
on clinical practice and patient outcomes.
Design: Retrospective cohort for algorithm derivation and valida-
tion, pre-post impact evaluation.
Setting: Tertiary teaching hospital system in Philadelphia, PA.
Patients: All non-ICU admissions; algorithm derivation July 
2011 to June 2014 (n = 162,212); algorithm validation Oc-
tober to December 2015 (n = 10,448); silent versus alert com-
parison January 2016 to February 2017 (silent n = 22,280; 
alert n = 32,184).
Interventions: A random-forest classifier, derived and vali-
dated using electronic health record data, was deployed both 
silently and later with an alert to notify clinical teams of sepsis 
prediction.
Measurement and Main Result: Patients identified for training the 
algorithm were required to have International Classification of Dis-
eases, 9th Edition codes for severe sepsis or septic shock and a pos-
itive blood culture during their hospital encounter with either a lactate 
greater than 2.2 mmol/L or a systolic blood pressure less than 90 mm 
Hg. The algorithm demonstrated a sensitivity of 26% and specificity 
of 98%, with a positive predictive value of 29% and positive likeli-
hood ratio of 13. The alert resulted in a small statistically significant 
increase in lactate testing and IV fluid administration. There was no 
significant difference in mortality, discharge disposition, or transfer to 
ICU, although there was a reduction in time-to-ICU transfer.
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Challenges

“regular” big data 
≠  

“medical” big data



Where are we at Queen’s?/KHSC

EMRGenomics Waveforms



Progress to date

Every heartbeat from every patient, in every bed 

HDF5-based data standard 

Fast query system 

30 TB of high-frequency data

These data 
have 
tremendous 
potential to 
generate novel 
hypotheses.



What we need

1

2

3

4

People!

Computing resources (storage, GPUs for deep learning)

EMR data (for clinical context)

Support from IT, Decision Support, Clinical Engineering

KHSC vs CAC
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