Al for Radiology

Amber Simpson, PhD

Canada Research Chair in Biomedical Computing and Informatics Associate Professor Department of Biomedical and Molecular Sciences / School of Computing <u>amber.simpson@queensu.ca</u> <u>simpsonlab.org</u> @profsimsim

Affiliate Member Vector Institute for AI

Al Hype is Not Going Anywhere

RSNA 2018

Hype has extended to politics ...

Andrew Yang - Running for US President

- Offsets job loss due to automation
- jobs"

Platform based on the Freedom Dividend: universal basic income of \$1000/mo

- He argues that "as AI becomes more advanced, 1/3 of workers will lose their

Example: AI to Predict Chemotherapy Response from CT Scans

CT Image

Tumor

Creasy, J. M. et al. Quantitative imaging features of pretreatment CT predict volumetric response to chemotherapy in patients with colorectal liver metastases. Eur. Radiol. 1–10 (2018).

Higher Heterogeneity = Better Response

Pre-Treatment CT

Exemplar Entropy Feature

Image segmentation is a foundational problem in prediction/prognostication from images

CT Image

Recall: Open Science Revolutionized Computer Vision

- Solved the object recognition problem
 - Visual Object Classes 2012 competition
 - Given an image, determine what is in the image (object recognition problem)
 - 10 million images with 1,000 labelled classes
 - Created ImageNet
 - Self-driving cars are now possible

red fox (100) hen-of-the-woods (100)

spotlight (66)

Hardest classes

hatchet (68) water bottle (68) velvet (68)

ladle (65)

ibex (100) goldfinch (100) flat-coated retriever (100)

porcupine (100) stingray (100) Blenheim spaniel (100)

loupe (66)

restaurant (64) letter opener (59

Image classification

Easiest classes

MICCAI Medical Segmentation Decathlon

M. Jorge Cardoso

King's College London

Amber Simpson

Memorial Sloan Kettering Cancer Center

Olaf Ronneberger

Google Deepmind

Bjoern Menze

Technische Universität München

Bennett Landman

Vanderbilt University

Geert Litjens

Radboud University Medical Center

Keyvan Farahani

National Institutes of Health

Bram van Ginneken

Radboud University Medical Center

Lena Maier-Hein

DKFZ German Cancer Research Center

Annette Kopp-Schneider

DKFZ German Cancer Research Center

Ronald Summers

National Institutes of Health Clinical Center

Spyridon Bakas

CBICA, University of Pennsylvania

Michela Antonelli

University College London

Medical Segmentation Decathlon Challenge

- Crowdsourcing challenge at MICCAI 2018
- Develop a semantic segmentation algorithm (or learning system) that can solve 10 segmentations tasks, separately without human interaction
- Toward an ImageNet for medical images
- http://medicaldecathlon.com/

Ten tasks

Data provided by my group at MSK

The Design

Phase 1

Best Performance by Team

Signif Score Phase 1

Decathlon Ranking – Phases 1&2

Signif Score (Volume & Boundary Dice)

Best Performance by Task

Volume Dice

BRATS_1	"CerebriuDIKU"	"0.695"
BRATS_2	"Isensee"	"0.477"
BRATS_3	"Isensee"	"0.682"
la_1	"Isensee"	"0.928"
liver_1	"Isensee"	"0.952"
liver_2	"Isensee"	"0.737"
hippocamp1	"Isensee"	"0.904"
hippocamp_2	"Isensee"	"0.889"
prostate_1	"Isensee"	"0.758"
prostate_2	"Isensee"	"0.896"
lung_1	"Isensee"	"0.692"
pancreas_1	"Isensee"	"0.795"
pancreas_2	"Isensee"	"0.523"
hepaticvessel_1	"Isensee"	"0.634"
hepaticvessel_2	"Isensee"	"0.694"
spleen_1	"beomheep"	"0.967"
colon_1	"Isensee"	"0.562"

Boundary Dice

BRATS_1	"lupin"	"0.884"
BRATS_2	"Isensee"	"0.733"
BRATS_3	"Isensee"	"0.906"
la_1	"lupin"	"0.968"
liver_1	"lupin"	"0.983"
liver_2	"Isensee"	"0.884"
hippocamp1	"Isensee"	"0.98"
hippocamp2	"Isensee"	"0.979"
prostate_1	"Isensee"	"0.958"
prostate_2	"Isensee"	"0.989"
lung_1	"Isensee"	"0.691"
pancreas_1	"Isensee"	"0.954"
pancreas_2	"Isensee"	"0.728"
hepaticvessel_1	"Isensee"	"0.834"
hepaticvessel_2 "Isensee"		"0.788"
spleen_1	"phil666"	"0.997"
colon_1	"Isensee"	"0.678"

Prized by Nvidia

Data Availability

Nvidia's Clara health care platform and medical imaging SDKs hit general availability

KYLE WIGGERS @KYLE_L_WIGGERS NOVEMBER 26, 2018 6:00 AM

Above: Jensen Huang, CEO of Nvidia. Image Credit: Nvidia In the initial release, Nvidia is making available an AI system that won the University of Pennsylvania Perelman School of Medicine's <u>BrATS challenge</u> for 3D MRI brain tumor segmentation at the 2018 International Conference On Medical Image Computing and Computer Assisted Intervention. Among the other AI models shipping are a tumor segmentation model trained on magnetic resonance imaging data, and 3D pancreas and tumor segmentation on portal venous phase CT data.

The Vision at Queen's

>5,000 segmented **MSK scans**

Semantic Segmentation Network

F. Raney MSc Student - CS

Groupe canadien des essais sur le cancer

Kingston Health Sciences Centre

Centre des sciences de la santé de Kingston

Federated Networks

Sharing data may not solve everything but hoarding data has solved nothing

Al can predict any outcome from any data

Data Overfitting in Imaging Biomarkers

Extract Tumor

Randomize Outcome

Build Prediction Model

Radiomics Can Predict Anything

Classifier

Health Data Silos

Radiology-Specific Challenges

- protected health information is notoriously hard to remove from images (e.g. NIH name badges example)
- lack of interoperability in imaging data
- lack of image acquisition standardization
- lack of standardized pipelines for sharing and anonymizing imaging data
- huge fines for leaking PHI (e.g. Columbia experience)

Toward Clinical Trial Use

Image Segmentation

Software for Pulling Data at Scale

Reproducibility/ Repeatability

Protein Markers

Genomics

Biological Rationale

Data Federation

Trainees

Research Staff

PANCREATIC CANCER ACTION NETWORK

Society of Abdominal Radiology

AAGER American Association for Cancer Research

