

PRECISION CRITICAL CARE How data can help us find the zebra in a herd of horses

DAVID MASLOVE, MD, MS, FRCPC DEPARTMENT OF CRITICAL CARE MEDICINE QUEEN'S UNIVERSITY KINGSTON, ONTARIO

KHSC/QUEEN'S INNOVATION WORKSHOP Feb 3, 2020

"When you hear hoofbeats, think of horses not zebras."

—Dr. Theodore Woodward

DATA TO ENABLE DISTINCTIONS

59 KB

DATA TO ENABLE DISTINCTIONS

59 KB

DATA TO ENABLE PRECISION

R_x

THE ICU IS A PROVING **GROUND FOR PRECISION** MEDICINE

Critical illness is defined by syndromes

...and syndromes are heterogeneous

Critical illness is defined by syndromes

Critical illness is defined by syndromes

<u>SEPSIS</u> = infection + life-threatening organ dysfunction (and is implicated in 1 out 5 deaths worldwide)

Brain

Heart

Liver

Machine learning & sepsis Where are we now?

Sepsis subtypes

Gene expression data

Gene expression data

Predicting sepsis onset

A Machine Learning Algorithm to Predict Severe Sepsis and Septic Shock: Development, Implementation, and Impact on Clinical Practice*

Heather M. Giannini, MD¹; Jennifer C. Ginestra, MD¹; Corey Chivers, PhD²; Michael Draugelis, BS²; Asaf Hanish, MPH²; William D. Schweickert, MD^{2,3}; Barry D. Fuchs, MD, MS^{2,3}; Laurie Meadows, RN, CCRN⁴; Michael Lynch, RN, CEN⁴; Patrick J. Donnelly, RN, MS, CCRN⁵; Kimberly Pavan, MSN, CRNP⁶; Neil O. Fishman, MD²; C. William Hanson, MD, III²; Craig A. Umscheid, MD, MSCE^{2,7,8}

Presisting sepsis onset

AT

Severe Implementation

Heather M. Giannini, MD¹; Jennifer C. Asaf Hanish, MPH²; William D. Schweickert, MD Laurie Meadows, RN, CCRN⁴; Michael Lynch, RN, CEN, Kimberly Pavan, MSN, CRNP⁶; Neil O. Fishman, MD²; C. William Craig A. Umscheid, MD, MSCE^{2,7,8}

TÀ.

thm to Predict **Content**, **Content**, Practice*

lis BS²;

"regular" big data ≠ "medical" big data

Challenges

Where are we at Queen's?/KHSC

Genomics

Waveforms

EMR

Kingston Health Sciences Centre

Centre des sciences de la santé de Kingston

Progress to date

These data have tremendous potential to generate novel hypotheses.

Every heartbeat from every patient, in every bed

W HDF5-based data standard

Fast query system

30 TB of high-frequency data

Computing resources (storage, GPUs for deep learning) **KHSC vs CAC**

2

EMR data (for clinical context)

Support from IT, Decision Support, Clinical Engineering

QUESTIONS & COMMENTS

david.maslove@queensu.ca

@DavidMaslove